Pseudo-solenoids are not continuously homogeneous

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Curvature Homogeneous Pseudo-riemannian Manifolds Which Are Not Locally Homogeneous

We construct a family of balanced signature pseudo-Riemannian manifolds, which arise as hypersurfaces in flat space, that are curvature homogeneous, that are modeled on a symmetric space, and that are not locally homogeneous.

متن کامل

Homogeneous Weak Solenoids

A (generalized) weak solenoid is an inverse limit space over manifolds with bonding maps that are covering maps. If the covering maps are regular, then we call the inverse limit space a strong solenoid. By a theorem of M.C. McCord, strong solenoids are homogeneous. We show conversely that homogeneous weak solenoids are topologically equivalent to strong solenoids. We also give an example of a w...

متن کامل

The Pseudo-circle Is Not Homogeneous

In the first two volumes of Fundamenta Mathematica, Knaster and Kuratowski raised the following two questions [15], [16]: (1) If a nondegenerate, bounded plane continuum is homogeneous, is it necessarily a simple closed curve? (2) Does there exist a continuum each subcontinuum of which is indecomposable? Although Knaster settled the second question in 1922 [14], it was to remain until 1948 for ...

متن کامل

Flows on Solenoids Are Generically Not Almost Periodic

The space of non–singular flows on the solenoid ΣN is shown to contain a dense Gδ consisting of flows which are not almost periodic. Whether this result carries over to Hamiltonian flows remains an open question. Introduction For any compact symplectic manifold M of dimension at least 4, L. Markus and K. R. Meyer demonstrate in [MM] that the space H (M) of all C (k ≥ 4) Hamiltonians on M contai...

متن کامل

Flat Homogeneous Pseudo-Riemannian Manifolds

The complete homogeneous pseudo-Riemannian manifolds of constant non-zero curvature were classified up to isometry in 1961 [1]. In the same year, a structure theory [2] was developed for complete fiat homogeneous pseudo-Riemannian manifolds. Here that structure theory is sharpened to a classification. This completes the classification of complete homogeneous pseudo-Riemannian manifolds of arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 2014

ISSN: 0166-8641

DOI: 10.1016/j.topol.2014.03.014